179 research outputs found

    Towards the automated analysis of simple polyphonic music : a knowledge-based approach

    Get PDF
    PhDMusic understanding is a process closely related to the knowledge and experience of the listener. The amount of knowledge required is relative to the complexity of the task in hand. This dissertation is concerned with the problem of automatically decomposing musical signals into a score-like representation. It proposes that, as with humans, an automatic system requires knowledge about the signal and its expected behaviour to correctly analyse music. The proposed system uses the blackboard architecture to combine the use of knowledge with data provided by the bottom-up processing of the signal's information. Methods are proposed for the estimation of pitches, onset times and durations of notes in simple polyphonic music. A method for onset detection is presented. It provides an alternative to conventional energy-based algorithms by using phase information. Statistical analysis is used to create a detection function that evaluates the expected behaviour of the signal regarding onsets. Two methods for multi-pitch estimation are introduced. The first concentrates on the grouping of harmonic information in the frequency-domain. Its performance and limitations emphasise the case for the use of high-level knowledge. This knowledge, in the form of the individual waveforms of a single instrument, is used in the second proposed approach. The method is based on a time-domain linear additive model and it presents an alternative to common frequency-domain approaches. Results are presented and discussed for all methods, showing that, if reliably generated, the use of knowledge can significantly improve the quality of the analysis.Joint Information Systems Committee (JISC) in the UK National Science Foundation (N.S.F.) in the United states. Fundacion Gran Mariscal Ayacucho in Venezuela

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Sound Source Distance Estimation in Diverse and Dynamic Acoustic Conditions

    Full text link
    Localizing a moving sound source in the real world involves determining its direction-of-arrival (DOA) and distance relative to a microphone. Advancements in DOA estimation have been facilitated by data-driven methods optimized with large open-source datasets with microphone array recordings in diverse environments. In contrast, estimating a sound source's distance remains understudied. Existing approaches assume recordings by non-coincident microphones to use methods that are susceptible to differences in room reverberation. We present a CRNN able to estimate the distance of moving sound sources across multiple datasets featuring diverse rooms, outperforming a recently-published approach. We also characterize our model's performance as a function of sound source distance and different training losses. This analysis reveals optimal training using a loss that weighs model errors as an inverse function of the sound source true distance. Our study is the first to demonstrate that sound source distance estimation can be performed across diverse acoustic conditions using deep learning.Comment: Accepted in WASPAA 202

    Actitudes hacia la estadĂ­stica de los estudiantes de psicologĂ­a, ingenierĂ­a y economĂ­a de la Universidad CatĂłlica de Colombia del semestre 2017-1

    Get PDF
    La escala de actitudes desarrollada por Estrada (2002) y validada por sus propiedades psicométricas en 2012 se adaptó al lenguaje de los alumnos de la Universidad y se aplicó a 588 estudiantes de los programas de Economía, Ingeniería y Psicología. Con la base de datos obtenida y la teoría clásica de los test y la teoría de repuesta al ítem, se validó otra vez la escala. No se encontró diferencia en las actitudes por carrera, género o jornada y se halló algo de favorabilidad en edades jóvenes frente a mayores. En el análisis multivariado se identificaron cuatro componentes principales.1a edició

    Bridging High-Quality Audio and Video via Language for Sound Effects Retrieval from Visual Queries

    Full text link
    Finding the right sound effects (SFX) to match moments in a video is a difficult and time-consuming task, and relies heavily on the quality and completeness of text metadata. Retrieving high-quality (HQ) SFX using a video frame directly as the query is an attractive alternative, removing the reliance on text metadata and providing a low barrier to entry for non-experts. Due to the lack of HQ audio-visual training data, previous work on audio-visual retrieval relies on YouTube (in-the-wild) videos of varied quality for training, where the audio is often noisy and the video of amateur quality. As such it is unclear whether these systems would generalize to the task of matching HQ audio to production-quality video. To address this, we propose a multimodal framework for recommending HQ SFX given a video frame by (1) leveraging large language models and foundational vision-language models to bridge HQ audio and video to create audio-visual pairs, resulting in a highly scalable automatic audio-visual data curation pipeline; and (2) using pre-trained audio and visual encoders to train a contrastive learning-based retrieval system. We show that our system, trained using our automatic data curation pipeline, significantly outperforms baselines trained on in-the-wild data on the task of HQ SFX retrieval for video. Furthermore, while the baselines fail to generalize to this task, our system generalizes well from clean to in-the-wild data, outperforming the baselines on a dataset of YouTube videos despite only being trained on the HQ audio-visual pairs. A user study confirms that people prefer SFX retrieved by our system over the baseline 67% of the time both for HQ and in-the-wild data. Finally, we present ablations to determine the impact of model and data pipeline design choices on downstream retrieval performance. Please visit our project website to listen to and view our SFX retrieval results.Comment: WASPAA 2023. Project page: https://juliawilkins.github.io/sound-effects-retrieval-from-video/. 4 pages, 2 figures, 2 table
    • …
    corecore